Breath acetone as a potential marker in clinical practice.
نویسندگان
چکیده
In recent decades, two facts have changed the opinion of researchers about the function of acetone in humans. Firstly, it has turned out that acetone cannot be regarded as simply a waste product of metabolism, because there are several pathways in which acetone is produced or broken down. Secondly, methods have emerged making possible its detection in exhaled breath, thereby offering an attractive alternative to investigation of blood and urine samples. From a clinical point of view the measurement of breath acetone levels is important, but there are limitations to its wide application. These limitations can be divided into two classes, technical and biological limits. The technical limits include the storage of samples, detection threshold, standardization of clinical settings, and the price of instruments. When considering the biological ranges of acetone, personal factors such as race, age, gender, weight, food consumption, medication, illicit drugs, and even profession/class have to be taken into account to use concentration information for disorders. In some diseases such as diabetes mellitus and lung cancer, as well as in nutrition-related behavior such as starvation and ketogenic diet, breath acetone has been extensively examined. At the same time, there is a lack of investigations in other cases in which ketosis is also evident, such as in alcoholism or an inborn error of metabolism. In summary, the detection of acetone in exhaled breath is a useful and promising tool for diagnosis and it can be used as a marker to follow the effectiveness of treatments in some disorders. However, further endeavors are needed for clarification of the exact distribution of acetone in different body compartments and evaluation of its complex role in humans, especially in those cases in which a ketotic state also occurs.
منابع مشابه
DETECTION AND MEASUREMENT OF ACETONE IN THE BREATH OF DIABETICS BY ION MOBILITY SPECTROMETRY METHOD
Background: The ion mobility spectrometry (IMS) is an analytical technique that is widely used due to its high sensitivity and speed for the detection of ionized molecules in gas phase and under atmospheric pressure. Breath analysis is a new method for obtaining information about person's clinical conditions that is considered by researchers. Human exhaled air contains a variety of components s...
متن کاملA Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management
Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist amon...
متن کاملOptimisation of sampling parameters for standardised exhaled breath sampling.
The lack of standardisation of breath sampling is a major contributing factor to the poor repeatability of results and hence represents a barrier to the adoption of breath tests in clinical practice. On-line and bag breath sampling have advantages but do not suit multicentre clinical studies whereas storage and robust transport are essential for the conduct of wide-scale studies. Several device...
متن کاملBreath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals.
BACKGROUND Ketogenic diets are used therapeutically to treat intractable seizures. Clinically, it appears that the maintenance of ketosis is crucial to the efficacy of the diet in ameliorating seizures. To understand how ketosis and seizure protection are related, a reliable, noninvasive measure of ketosis that can be performed frequently with minimal discomfort is needed. OBJECTIVE The objec...
متن کاملContinuous Monitoring of Breath Acetone, Blood Glucose and Blood Ketone in 20 Type 1 Diabetic Outpatients Over 30 Days
Breath analysis has received continuously increasing attention because of its potential as a non-invasive method for disease diagnosis and metabolic status monitoring. Among thousands of breath volatile organic compounds (VOCs), acetone is the second to the highest abundant species in normal human breath gases, which has been extensively studied as a breath biomarker of diabetes or as a high ab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of breath research
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2017